Blood transfusion after orthopaedic surgery accounts for 10% of all packed red blood-cell transfusions, but use varies substantially across hospitals and surgeons.

Transfusions can cause systemic complications, including allergic reactions, transfusion-related acute lung injury, transfusion-associated circulatory overload, graft-versus-host disease, and infections.

Tranexamic acid is a new cost-effective blood management tool to reduce blood loss and decrease the risk of transfusion after total joint arthroplasty.

Current clinical evidence does not justify transfusions for a hemoglobin level of >8 g/dL in the absence of symptoms.

Studies have also supported the use of this trigger in patients with a history or risk of cardiovascular disease.
Allergic Reaction
Allergic reactions can be caused by many factors in the transfused product, including blood components such as plasma proteins, processing chemicals, and cytokines. Reactions to transfused packed red blood cells (0.15% to 15%) are a common source of morbidity.

Clinical manifestations range in severity from urticaria to anaphylaxis. Less severe reactions are often treated with diphenhydramine, whereas more severe cases usually require corticosteroids, and anaphylaxis requires epinephrine. There is little evidence suggesting that pretransfusion administration of acetaminophen and diphenhydramine prevents such reactions. One randomized controlled trial of pretransfusion use of these medications found no difference in transfusion reactions but a nonsignificant decreased rate of febrile reactions with pretreatment.

Transfusion-Related Acute Lung Injury
Transfusion-related acute lung injury is a clinical diagnosis of acute lung injury characteristically occurring within six hours of a transfusion; a subset, delayed transfusion-related acute lung injury, occurs within seventy-two hours. If other potential etiologies coexist, the response is considered a possible transfusion-related acute lung injury, occurs within seventy-two hours. If other potential etiologies coexist, the response is considered a possible transfusion-related acute lung injury, occurring within sixty hours after a transfusion, but cases can occur up to twenty-four hours. In the last decade, the prevalence has increased, with rates reported to range from 1% to 8% for patients undergoing hip and knee arthroplasty and from 6% to 11% for patients in the intensive care unit. The overall mortality rate has been reported to be as high as 2% to 15%. Patients at age extremes are at greatest risk: 64% of patients who have transfusion-associated circulatory overload present with respiratory distress, tachycardia, fever, hypothermia, and hypotension. Anaphylactic reactions can be similar, but transfusion-related acute lung injury has no urtica,
caria, and chest radiographs show pulmonary edema. Transfusion-related acute lung injury is treated with supportive measures, with 70% to 90% of patients requiring mechanical ventilation.

Transfusion-Associated Circulatory Overload
Transfusion-associated circulatory overload results in pulmonary edema from fluid overload. According to the definition of the Public Health Agency of Canada, transfusion-associated circulatory overload occurs within six hours after a transfusion, but cases can occur up to twenty-four hours. Patients at age extremes are at greatest risk: 64% of patients who have transfusion-associated circulatory overload.

TABLE I Transfusion-Associated Mortality and Morbidity Divided by Complication

<table>
<thead>
<tr>
<th>Complication</th>
<th>U.S.* (N = 198)</th>
<th>SHOT† (N = 293)</th>
<th>Major (N = 1264)</th>
<th>Minor (N = 15,357)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemolytic reaction</td>
<td>53 (27)</td>
<td>24 (8.2)</td>
<td>110 (8.7)</td>
<td>897 (5.8)</td>
</tr>
<tr>
<td>Allergic reaction</td>
<td>12 (6)</td>
<td>42 (14.3)</td>
<td>267 (21.1)</td>
<td>3222 (21.0)</td>
</tr>
<tr>
<td>Transfusion-related acute lung injury</td>
<td>74 (37)</td>
<td>84 (28.7)</td>
<td>341 (27.0)</td>
<td>106 (0.7)</td>
</tr>
<tr>
<td>Transfusion-associated circulatory overload</td>
<td>35 (18)</td>
<td>20 (6.8)</td>
<td>92 (7.3)</td>
<td>151 (1.0)</td>
</tr>
<tr>
<td>Graft-versus-host disease</td>
<td>2 (1)</td>
<td>27 (9.2)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Infection</td>
<td>21 (11)</td>
<td>29 (9.9)</td>
<td>97 (7.7)</td>
<td>12 (0.1)</td>
</tr>
</tbody>
</table>

*Data are from the U.S. Food and Drug Administration cumulative reporting of transfusion-related mortalities from 2008 to 2012. †Data are from the cumulative reports of Serious Hazards of Transfusion (SHOT), the U.K. hemovigilance system, from 2008 to 2012, for mortality and major and minor morbidity.

TABLE II Prevalence and Mortality Rates of Transfusion Complications

<table>
<thead>
<tr>
<th>Complication</th>
<th>Prevalence (%)</th>
<th>Mortality (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allergic reaction</td>
<td>0.15 to 15*</td>
<td><1*</td>
</tr>
<tr>
<td>Transfusion-related acute lung injury</td>
<td>0.08 to 15</td>
<td>5 to 10</td>
</tr>
<tr>
<td>Transfusion-associated circulatory overload</td>
<td>1 to 11†</td>
<td>2 to 15‡</td>
</tr>
<tr>
<td>Graft-versus-host disease</td>
<td><1</td>
<td>84 to 100§</td>
</tr>
</tbody>
</table>

*Data are from Hirayama and Lieberman et al. †Data are from Alam et al. and Lieberman et al. ‡Data are from Alam et al. and Lieberman et al. §Mortality rates for severe reactions. Mild presentations are not diagnosed, and consequently overall mortality rates are unknown.
are seventy years or older11. Frequently seen symptoms include dyspnea, hypoxemia, orthopnea, hypertension, tachycardia, and congestive heart failure11,13.

The risk of this complication is reduced with pretransfusion fluid overload evaluation11, slow transfusion speed (<120 mL/hr)12, and transfusion of a single unit11. For patients with congestive heart failure and renal dysfunction, transfusions should be given during dialysis. Trials support pretransfusion furosemide usage, but ideal dosing has not been determined11,24. As opposed to post-transfusion administration, pretransfusion use maximizes diuretic effectiveness11.

Intravenous furosemide is a first-line treatment, after which afterload reducers, including angiotensin-converting enzyme inhibitors, hydralazine, and nitroglycerin, are used11.

\textbf{Venous Thromboembolism}

Studies have suggested an increased risk of deep venous thrombosis (DVT) and pulmonary embolism with transfusion27,28. A database study of patients with colorectal resection showed a significant dose-dependent increased rate of venous thromboembolism (VTE) at thirty days, with VTE developing in 1.8% (353) of 19,588 patients who had no transfusion, 3.7% (sixty-five) of 1751 patients who had one to two units, 4.9% (twenty-three) of 466 patients who received three to five units, and 9.4% (thirteen) of 138 patients who had transfusion of six or more units27,28. There is evidence to suggest that autologous predonation of blood leads to fewer DVTs29,30. These studies suggest that a combination of decreased preoperative hematocrit and depletion of other unaccounted blood proteins may explain the decreased rate of DVTs.

\textbf{Graft-Versus-Host Disease}

Graft-versus-host disease presents along a spectrum of severity, with mild presentations being unrecognized and severe reactions having high mortality rates (84% to 100%)13. In graft-versus-host disease, donor T lymphocytes proliferate (sometimes for years), leading to immune reactions against antigens in the recipient. Major risk factors are immunosuppression, similar donor and recipient human leukocyte antigen haplotypes, cardiopulmonary bypass with cardiothoracic surgery, and newer blood products. Newer blood products (less than four days from donation) and products not irradiated or leukoreduced are higher risk because T-cell survival and function are greater.

Clinical manifestations occur two to thirty days after a transfusion and include fever, skin blistering, diarrhea, hepatitis, and marrow aplasia. The end stage is multiorgan failure, marrow failure, infection, and bleeding11. Management is supportive. Immunosuppressive medications are not effective, and the effectiveness of antibiotics is unknown. Blood irradiation and leukoreduction decrease the risk of graft-versus-host disease, with irradiation being more effective11. U.S. blood products are irradiated if a patient is at risk for graft-versus-host disease, a family member donates, or cross-matching requires a strong human leukocyte antigen similarity11.

\textbf{Blood-Borne Infections}

Before the recognition of human immunodeficiency virus and hepatitis, blood transfusions resulted in many new infections. Extensive screening has since been implemented to prevent transfusion of infected blood. Per U.S. Food and Drug Administration (FDA)

\begin{table}[h]
\centering
\begin{tabular}{|l|l|l|l|l|l|}
\hline
Study & Level of Evidence & Patient Group & SSI Criteria* & Transfusion a Risk Factor for SSI* & Odds Ratio \\
\hline
Garcia-Alvarez et al.34 (2010) & II & Subcapital femoral neck fractures & CDC & Y & 1.96 \\
Morris et al.36 (2003) & II & Lower extremity oncologic & Erythema or purulent drainage in 30 days & Y & \\
Thanni and Aigoro37 (2004) & III & Internal fixation of long bone fractures & Purulent discharge or culture positive nonpurulent discharge & N & \\
Ho et al.35 (2007) & III & Adolescent idiopathic scoliosis posterior spinal arthrodesis & Delayed infection of >6 m & Y & \\
Schwarzkopf et al.33 (2010) & III & Thoracic and lumbar spinal surgery & CDC criteria within 30 days & Y & 8.02 \\
Woods et al.38 (2013) & III & Lumbar spinal surgery & CDC criteria within 30 days & N† & \\
Newman et al.39 (2014) & III & Primary total hip and knee arthroplasty & Reoperation for suspected infection within 3 mo of index surgery & Y & 2.85 \\
\hline
\end{tabular}
\caption{Orthopaedic Studies with Data on the Odds Ratio for the Risk of Surgical Site Infection with Transfusion}
\end{table}

*SSI = surgical site infection, and CDC = Centers for Disease Control and Prevention definition of infection40. †Transfusion was not found to be a risk factor for SSI, but a volume-dependent increased odds was noted.
regulations, all blood is screened for hepatitis B and C, human immunodeficiency virus, human T-lymphotropic virus, syphilis, West Nile virus, and Chagas disease. However, blood products may contain diseases not tested for such as chikungunya, malaria, other viruses, bacteria, parasites, and prions.

Immunomodulation

There is increased concern about the effects of blood transfusions on the immune system (immunomodulation). Transfusion recipients are more susceptible to pneumonia, urinary tract infection, and surgical site infections. Irradiation, leukoreduction timing, and blood storage time may minimize these risks.

Seven studies specific to orthopaedics have described the odds ratio of surgical site infections with transfusion (Table III). Five studies (two with Level-II evidence and three with Level-III) found transfusions were associated with surgical site infection (odds ratio, 1.96 to 8.02); two Level-III studies found no association. Ho et al. found that delayed infection (six months) after spinal arthrodesis for adolescent idiopathic scoliosis was associated with perioperative blood transfusions. Newman et al. reported that allogeneic transfusion was associated with increased odds (odds ratio, 2.85) of reoperation for infection within three months of primary hip and knee arthroplasty. Multiple studies found a significant dose-dependent increase in both surgical site and overall infections with transfusion.

Another nine studies of orthopaedic patients described the rates of surgical site infection and/or overall postoperative infections (urinary tract infection, pneumonia, and surgical site infection) (Table IV). The studies generally found significantly greater surgical site and overall infection rates with transfusion and overall infection rates with transfusion. Some studies showed similar rates of infection between patients who had no transfusion and those who received autologous units, suggesting that a mechanism independent of storage may be responsible for immunomodulation. The surgical site infection rate was 1.0% to 7.1% for patients who had no transfusion, 0% to 8.7% for autologous transfusion, and 2.4% to 18.3% for allogeneic transfusion. The overall infection rate was 2.0% to 9.4% for patients who had no transfusion, 0% to 7.3% for those who had autologous transfusion, and 6.1% to 14.8% for those who had allogeneic transfusion.

In summary, most studies in orthopaedics have suggested allogeneic transfusions are associated with greater infection rates. Those studies are limited by being observational, and the need for a transfusion may be a marker for patients prone to infections. Although the studies adjusted for comorbidities, other factors may have been responsible. The lower rates with autologous transfusion warrant further investigation.
Strategies to Reduce the Need for Transfusion

Multiple strategies have been developed to reduce blood loss and the need for transfusion by intervening preoperatively, intraoperatively, and postoperatively. Other articles have reviewed these techniques.4-7 (Table V).4,6,8,20-36. Not all have proven to be beneficial or cost-effective. Of those listed, the available literature favors the following: the preoperative use of erythropoietin in certain populations and for patients who have a preoperative hemoglobin of <10 g/dL;5 the use of regional and hypotensive anesthesia; and the intraoperative use of tranexamic acid, which is the most promising technique. Many recent studies have focused on its use in both local and systemic administrations and have found decreased blood loss and transfusion rates without evidence of significantly increased rates of complications.4,5,7-6. However, those studies used various treatment dosages, timings, and formulations, and additional study is needed to determine the most efficacious approach.

Despite these various approaches to reduce the need for transfusion, no consensus on when to transfuse has been developed. Consequently, comparing the impact on transfusion rates across studies is difficult. Minimizing variation in transfusions thresholds will also lead to more effective use of blood.

Transfusion Variation

On the basis of an international survey of blood utilization, orthopaedics uses 6% to 13.8% of allogeneic and autologous packed red blood cells: total hip arthroplasty uses 4.85%; total knee arthroplasty, 1.93%; and other orthopaedic surgery (not including trauma), 7.04%.4-6. Transfusion practices vary among clinicians and hospitals. According to one 2009 study, only 47% (ninety-one) of 195 hospitals in the U.K. had transfusion protocols, and the rate of transfusions for total hip arthroplasty surgeons found differing transfusion rates: 4.8% to 63.8% for total knee and 4.3% to 86.8% for total hip procedures.6. Surgeons’ rationales ranged from minimizing blood use to limiting dizziness and facilitating recovery.6. Even when protocols exist, they are inconsistently applied.6,7. Another study examined information from the database of the University Health System Consortium (a large group of academic hospitals and their affiliates across the U.S.) from 2006 through 2010 and found that transfusion rates for primary total hip arthroplasty ranged from 1.5% to 77.8%.6. The odds ratio of receiving a transfusion at a hospital with a high rate of transfusions compared with that at a hospital with an average rate of transfusions was 2.41.6. A study of the U.S. Nationwide Inpatient Sample found that transfusion rates in patients undergoing total hip arthroplasty from 2005 through 2008 had increased from 18.12% to 21.21%.6. Those investigators also found substantial variation in practice, with hospitals in the Northeast region having an odds ratio of 1.4 of providing a transfusion compared with all other regions.

A systematic review of factors affecting orthopaedic transfusion decision making by Barr et al.6 found that the most common factors were low hemoglobin levels and older age. However, the impact of other factors varied substantially, further indicating the wide variation in practice. Hemoglobin thresholds are often the main transfusion criteria, but the target is controversial.6,5,9. A survey of provider practices showed wide ranges among orthopaedists, with the trigger hemoglobin levels ranging from 6 to 11 g/dL.6,7. Barr et al.6 found that a higher threshold was used for a patient with symptoms of anemia (8.5 to 12 g/dL) than for one without such symptoms (6 to 9 g/dL). Other factors predisposing to receiving a blood transfusion were lower body weight, comorbidities (rheumatoid arthritis, history of anemia, diabetes, cardiovascular disease, renal failure, or metastasis), and complexity of surgery.

Clinical Studies on Restrictive Transfusion in Adults

Given this wide variety in practices, assessment of the rationale and evidence for transfusion is warranted to avoid unnecessary risk. Packed red blood cells are given for concerns of decreased oxygen delivery. However, the decreased viscosity of anemic blood can compensate with greater blood flow. Research indicates no clinically relevant difference in oxygen delivery for hemoglobin levels from 6 to 10 g/dL.7. In studies of Jehovah’s Witness patients, the risk of morbidity and mortality increased only for a hemoglobin level of <7 g/dL. Goodnough et al.7 suggested that cardiovascular disease or older age warrants a higher target.

Randomized controlled trials of patients in critical care, after cardiothoracic surgery, and with gastrointestinal bleeding found similar to better mortality and morbidity outcomes with restrictive (a hemoglobin level of 7 to 8 g/dL) compared with liberal (a hemoglobin level of 9 to 10 g/dL) transfusion.

TABLE V Strategies to Reduce the Need for Transfusion

<table>
<thead>
<tr>
<th>Timing</th>
<th>Intervention</th>
<th>Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preoperative</td>
<td>Iron therapy, intravenous erythropoietin, autologous blood transfusion, and discontinuation of anticoagulation medicines (aspirin and nonsteroidal anti-inflammatory drugs)</td>
<td>Cherian et al.6 and Siappendel et al.50</td>
</tr>
<tr>
<td>Intraoperative</td>
<td>Pharmacologic: fibrin sealants, desmopressin, thrombin, lavage with epinephrine or norepinephrine, epsilon-aminocaproic acid, and tranexamic acid; Nonpharmacologic: normovolemic hemodilution, hypotensive anesthesia, tourniquets, bipolar sealants, and cell saver</td>
<td>Aguilera et al.51, Banerjee et al.3, Cherian et al.4, Chimeno et al.52, Gilbody et al.53, Martin et al.54, Thoms and Marwin55, and Yang et al.56</td>
</tr>
<tr>
<td>Postoperative</td>
<td>Autologous blood transfusion drains and not using drains</td>
<td>Jauregui et al.7</td>
</tr>
</tbody>
</table>

References:
- Cherian et al.6
- Slappendel et al.50
- Aguilera et al.51
- Banerjee et al.3
- Cherian et al.4
- Chimeno et al.52
- Gilbody et al.53
- Martin et al.54
- Thoms and Marwin55
- Yang et al.56
protocols25-28,69. A Cochrane review of medical and surgical populations noted that, compared with liberal transfusion protocols, restrictive protocols resulted in similar complication rates, significantly lower in-hospital mortality, similar thirty-day mortality, and comparable duration of stay and function assessed by ambulatory status and fatigue questionnaires58. Those authors concluded that restrictive thresholds can be used for most patients, even those with a history of cardiovascular disease70.

A systematic review of the literature identified seven studies involving orthopaedic patients that used restrictive protocols (see Appendix)71-77. The largest study, a randomized controlled trial of patients who were surgically treated for a hip fracture by Carson et al.72, had approximately 1000 patients per group. The authors conducted a pilot study of eighty-four patients with hemoglobin levels of <10 g/dL in the first three postoperative days51. The patients were randomized to a liberal (10 g/dL) or restrictive (8 g/dL or symptoms of anemia) transfusion group. There was no difference in the ability to walk 10 ft (3 m) or in mortality rates at sixty days. No significant difference was found in outcome between these groups or in the subgroup of patients with cardiovascular disease71. Using these results, a larger study (2000 patients) was powered to 90% to detect an absolute 8% intergroup difference72. The inclusion criteria were refined to only patients with history of, or risk factors for, cardiovascular disease. Despite this sicker population, no significant difference was found in the primary outcome of mortality and inability to walk. No significant differences were found with respect to mortality rates at thirty and sixty days, complications, duration of stay, functional activity, surgical site infection, or DVT and pulmonary embolism. The restrictive transfusion protocol used only one-third the number of packed red blood-cell units used by the liberal protocol72.

Another randomized controlled trial of 120 patients with a hip fracture focused on the ability to walk, comparing liberal (10 g/dL) and restrictive (8 g/dL) transfusion thresholds73. Despite randomization, the two groups had different baseline characteristics: the restrictive group had higher American Society of Anesthesiologists scores and number of screw fixations, whereas the liberal group had more sliding hip screws and intramedullary devices. No difference was found in functional outcome (walking ability, duration of stay, and number of patients achieving independent walking) except for patient-reported fatigue scores on postoperative day 2. However, the restrictive group had significantly more cardiovascular complications (10% versus 2%) and thirty-day mortality (8% versus 0%).

Other studies have evaluated patients who had total hip and knee arthroplasties74-77. Three of the studies were limited by inconsistent baseline comparison protocols75-77 and variations at different test sites for a multisite trial56,77. In fact, one of the studies77 found a 39% increase in the transfusion rate with the new so-called restrictive protocol at one of the study sites. Consequently, these researchers performed a post hoc analysis of their data by switching the patient classification in that hospital such that the new protocol was considered liberal because it was less restrictive than the established protocol. Patient classification in the other hospitals remained the same. With this recategorization, they found that the restrictive group had significantly reduced blood usage (26.4% versus 39.1%) and significantly lower infection rates (5.4% versus 10.2%), specifically urinary tract infections (8% versus 12%) and surgical site infection (2% versus 9%). Similar to the study by Carson et al.72, no difference was detected in functional outcomes measured, that is, quality of life and fatigue76.

Grover et al.74 focused on identifying silent myocardial ischemia in patients with total knee and hip arthroplasties with protocols similar to those in the study by Carson et al.72. Patients more than fifty-five years old were monitored from twelve hours before until three days after surgery to identify electrocardiographic changes. Patients with certain cardiovascular history were excluded because of the difficulty of identifying electrocardiographic changes. There was no difference in the number of silent ischemic events, but when ischemic, the liberal group had a significantly greater ischemic load (minutes of ischemia on a Holter monitor divided by total monitoring time). Sufficient power was lacking for conclusive evidence. No differences in duration of stay or complications were found74.

Many studies are severely limited compared with the study by Carson et al.72 because they did not restrict patient enrollment to those who would definitely receive a transfusion in the liberal protocol. The other studies contained, in both groups, patients with a hemoglobin level of >10 g/dL who would not receive a transfusion under either protocol. Additionally, multiple studies are hindered by inconsistent preintervention protocols72-77.

Overall, Grade-A evidence78 supports using a restrictive hemoglobin transfusion trigger of 8 g/dL or symptomatic anemia for patients with or without a history of cardiovascular disease because there is no impact on cardiovascular complications, rehabilitation, or duration of stay (Table VI). Grade-B evidence79 suggests that transfusions increase infection rates. In
their review, Carson et al. found a nonsignificant 19% decrease in infection rates with restrictive protocols. Grade-I evidence supports the association between transfusions and VTEs.

Slappendel et al. conducted an analysis of their database of information on orthopaedic patients and standardized their perioperative management to minimize blood transfusions. Their interventions included iron and/or erythropoietin pretreatment for certain patients, stopping aspirin and nonsteroidal anti-inflammatory drugs, perioperative normothermia, postoperative blood salvage, use of aprotinin (aprotinin is no longer approved in the U.S., and this study was conducted before the introduction of tranexamic acid), and consistent use of a restrictive transfusion trigger. They found that the transfusion rate was reduced from 34% to 7% and the rate of deep wound infections from 2.6% to 1.3%.

Their report showed that implementation of a consistent transfusion protocol leads to improved results, and current data on various transfusion interventions should be used in constructing an institution’s protocol.

Transfusion of packed red blood cells has multiple associated complications and may place patients at greater risk for infections, including surgical site infections. Although there are many techniques for minimizing the need for a transfusion, there is substantial variation in transfusion practices with no universally accepted protocol at the present time. Current evidence suggests that a restrictive protocol (a hemoglobin level of <8 g/dL) is not detrimental to patient outcomes and can decrease the risk of infection and cost. More conservative transfusion protocols should be adopted and integrated with the use of blood preservation techniques in a standardized fashion, similar to the work of Slappendel et al. Such standardization and critical review of practices will more efficiently use blood products, protect patients, and decrease costs.

Appendix

Table showing data on restrictive transfusion threshold studies in orthopedics is available with the online version of this article as a data supplement at jbjs.org.

Karhikeyen E. Ponnsamy, MD
Thomas J. Kim, MD
Harpal S. Khanauja, MD
c/o Elaine P. Henze, BJ, ELS,
Medical Editor and Director,
Editorial Services,
Department of Orthopaedic Surgery,
The Johns Hopkins University/Johns Hopkins Bayview Medical Center,
4940 Eastern Avenue, #A665,
Baltimore, MD 21224-2780.
E-mail address: chenze1@jhmi.edu

References

